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1. I N T R O D U C T I O N  

Gas-particle suspension flows are found in many industrial applications, such as cyclone separators 
and classifiers, pneumatic transport of powder, sand blasting, combustion of pulverized coal, as 
well as rocket exhausts containing ash or unburnt metal powders. 

Despite considerable progress in analytical and experimental studies, the design of pneumatic 
transport systems largely relies on empirical correlations. This is due to the complex mechanisms 
involved in gas-particle, particle-particle and particle-pipe wall interactions. The gas-particle flow 
is characterized by couplings between two phases such as thermal coupling, momentum coupling 
and mass coupling. 

An experimental study on gas-particle suspension flow in a pipe was conducted by Boothroyd 
(1966). More extensive experimental studies were undertaken by Lee (1982), Tsuji et al. (1984) and 
Cape & Nakamura (1973), who measured the pressure drop, velocity distribution and the friction 
factor. 

As part of a numerical analysis of gas-particle flow, Crowe & Sharma (1978) developed a particle 
trajectory model. This model is based on treating the particles as sources of mass, momentum and 
energy to the gaseous phase. Crowe & Sharma (1978) also developed an implicit quasi one- 
dimensional numerical formulation for two-phase flow (CONVAS model), and Lee & Crowe (1982) 
extended the one-dimensional CONVAS model to two-dimensional flows (PSI-cell model). 

Another approach in modeling gas-particle flow is to regard the conveying gas phase and particle 
phase as two interactive fluids which exchange momentum, energy and mass with each other. This 
is called the "two-fluid" equation model. Depending on the physical models about the interactive 
exchanges of momentum and energy, the pressure gradient and the constitutive relation between 
stress and strain in the particle phase, there have appeared in the literature several different 
derivations of the "two-fluid" equations (Drew 1971; Marble 1963). 

Melville & Bray (1979) applied Owen's (1969) theory to analyze a gas-particle turbulent round 
jet, in which the bulk motion of the particles was treated as a hypothetically continuous fluid mixed 
with the conveying primary fluid. 

Elghobashi & Abou-Arab (1983) developed two governing equations which describe the 
conservation of turbulent kinetic energy and the dissipation rate of that energy for the conveying 
fluid in a two-phase flow. 

Choi & Chung (1983) modified the Melville & Bray (1979) model to apply it to a wall-bounded 
shear flow. Here, the relative velocity between the two phases was assumed to be negligible, and 
the mixing-length model was used. Such assumptions are valid only for small Stokes numbers, 
defined as the ratio of the aerodynamic response time to some characteristic time for the flow 
system. If the Stokes number is not small and if the mean velocity of the conveying fluid is slow, 
the particles are not able to respond quickly to changes in the gas flow, thus the relative velocity 
should not be neglected. In addition, it was assumed that the turbulent kinetic energy of the 
conveying fluid is generated by both the primary fluid and the fluctuating solid particles, but that 
it is dissipated by the primary fluid only. 
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Recently, it was shown analytically that the turbulent kinetic energy is dissipated by the relative 
motion between the two phases as well as by the primary fluid itself (Elghobashi & Abou-Arab 
1983). Chung et al. (1985) developed an eddy-viscosity model based on an approximate balance 
equation for k derived from those of Elghobashi & Abou-Arab (1983). This model was successful 
in predicting the pressure drop of gas-particle flow in a venturi. 

The objective of the present work is to analyze gas-particle flow in a pipe using this refined 
physical model. The present numerical results are compared with experimental results and previous 
predictions. 

2. PHYSICAL MODELS FOR GAS-PARTICLE FLOWS 

In the "two-fluid" equation model, mean continuity equations and volume-averaged momentum 
equations for the primary conveying fluid (gas phase) and secondary fluids (particle phase), 
neglecting the added mass effect of the accelerated fluid and Basset forces, are given in 
two-dimensional cylindrical coordinates (Boothroyd 1971) as follows: 

primary fluid 

auf l ~  
8x + -r~r (rPc) = 0 [l] 

_ .,. at?~ .., ao~ aP l a F r /  aO~ ) j  
[2] 

and 
secondary fluid 
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pp Up -~x + ~p r?p ~r . . . .  la ~x r Or (r~'pp;vg)- (O,p',v;) [5] 

ax (~u'~v~,) - rp,. 

We assume that the local values of ~t are small enough (at most of the order of 10 -3) to cope 
with the assumption of a dilute suspension. Therefore the bulk density of the primary fluid 
Pb ffi pf(1 - ~t) can be assumed to be constant, whereas the dispersed particle density (~p) is treated 
as a variable. It is assumed that the secondary fluid consists of particles of spherical shape and 
uniform size and that the intcrparticle collisions and interparticlc interactions are negligible. The 
final terms Fpx, in [2] and [4], and F~, in [5], represent the interaction force per unit volume between 
the two phases in the axial and radial directions, respectively. Then for the panicle Reynolds 
number <700, Fpx and Fp, can be written as follows (Boothroyd 1971): 

PP [6a] 

and 

Fp, = (t;'p - 7c) t~, [6b] 
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where t* is the Stokesian relaxation time; defined as the time required for a particle, released from 
rest into a following stream, to achieve 63% of the free stream velocity, and given by 

18~f  

where f = correction factor (=  1 + 0.15 _0~7, R=p' ], d.p = particle diameter, p, = density of material of 
the particle phase and # = dynamic viscosity of the primary fluid. In [1]--[5] [7 and 17 denote the 
mean velocity components in the axial and radial directions, u' and v' the fluctuating turbulent 
velocity components and the subscripts f and p refer to the primary and secondary fluids, 
respectively. Symbols vn and v¢ stand for the laminar kinematic viscosity of the primary fluid and 
the virtual laminar kinematic viscosity of the secondary fluid, respectively. 

For a simple gradient turbulence model at first-order closure level, the Boussinesq eddy-viscosity 
models are applied as in Choi & Chung (1983): 

017f [8] / / 

U f V f  ~ - -  E f  Or ' 

UvVp=--% Or' [9] 

w 

% 0pp [10] p~v~ = ~ Or 

and 
D 

Ep Opp [11] /'pUp= ~, Ox' 

where Ef is the scalar eddy viscosity of the primary fluid, ~p is that of the secondary fluid and ep/¢, 
is an eddy diffusivity of the secondary fluid. The Schmidt number, ¢,, is chosen to be 0.7, as used 
by Melville & Bray (1979). 

The turbulence models for the scalar eddy viscosities, Er and Ep, were developed and tested 
successfully in a pipe flow by Choi & Chung (1983). But this model is only satisfied for small Stokes 
number. In the present study, a model used in Chung et al. (1985), based on approximate balance 
equations for k and derived from those of Elghobashi & Abou-Arab (1983), is used. Applying the 
simple mixing-length model to terms of the balance equations for k in a state of equilibrium, and 
by using the isotropic approximations, k = 1.5 u~ and E = 0.08 k3/2/lr, the production term, P, and 
the dissipation term, t/, of the turbulent kinetic energy are approximated as follows: 

_ /'dOf~ ~ / fd2(1-~) (ddr f )~  P = pr~f~-~r ] + 1.02prEt: ~ ci~ [121 

and 

= - - 3  C ff.E r/ 0 147 ptu? + (u f -  Up)Ur. 
" lr ~ t *  

[131 

Since in the state of equilibrium p ffi rl, the following balance equation may be obtained: 

.j =0.147 Ir - - - P ' t  * 'uf , up)uf, [14] 

where uf and up are the turbulent characteristic velocity scales for the primary and secondary fluids 
and It is the length scale for the primary fluid. The model constant C~ is of the order of unity. 
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Using the relations, ~r--urlr and El0 = l~ldOddrl in [14], the ratio of the scalar eddy viscosity in 
the particle-laden flow to that in the clean flow is found to be 

£f 

EfO 

6.8 - 6.8 1~ ~ / ~ p ' ~  ] ~/2 

1 + C~, ~p tt (1  
[15] 

where C~, is a model constant to be determined and tl is the Lagrangian integral time scale. For 
a case when ~p/p, ,~ 1, the second term in the numerator in [15] may be neglected. The eddy 
viscosity of the clean fluid flow without suspension of solid particles, Er0, is modeled by the 
conventional mixing-length model (Choi & Chung 1983). The eddy viscosity % and the virtual 
laminar kinematic viscosity vp~ of the secondary fluid were estimated by Choi & Chung (1983) using 
the following models: 

-%= ~t*'~# [16] 
Ef 1 + ¢X \-~[] 

and 

Vp_.1 = v 2 [I 7] 
Er 

Here, ,{ = 1 and/~ ---2 are model constants and the turbulent time scale, tt, is estimated by the 
relation tl = 12fiEf. 

3. NUMERICAL PROCEDURE 

A forward marching technique (Patankar & Spalding 1970) is used to solve the governing 
equation. Each equation is transformed by a stream function derived from the continuity equation 
of the primary fluid. In the Patankar & Spalding (1970) scheme, the pressure gradient is estimated 
from the information of the previous calculation step. Then, the momentum equation is solved for 
the next downstream step. In this case, due to the approximate estimate of tim pressure gradient, 
the computed boundary is not coincident with the physical boundary. In order to minimize this 
discrepancy, they proposed the following formula to estimate the pressure gradient: 

dp = F'  mOdA [18] 
dx A A s dx'  

where F' is the retarding force (F'/A = 2~w/r) per unit length exerted by the wall, z,, and A are 
the wall shear stress and the cross-~etional area of the pipe, and rh is the mass flow rate. The wall 
shear stress is generated by both the prinmry fluid and the secondary fluid (particles). The wall shear 
stress from the primary fluid is computed from the condition that the numerical value of Rz5 should 
be matched at the joining point, as in the Patankar & Spalding (1970) scheme. The wall shear stress 
from the secondary fluid is obtained by using the. mean velocity gradient of the secondary fluid 
at the wall. The initial velocity profiles of the primary and secondary fluids at the inlet of a pipe 
are assumed to be the same as when fully developed, as in Chung et al. (1985). Thus, the following 
relation is obtained for the case of Up = tTf: 

dp l d I dO 1 --rd-~ (~ar.¢+ Gtr.)r- '~- r , [19] 



BRIEF COMMUNICATION 279 

where E=fr is the effective eddy viscosity, defined as the laminar kinematic viscosity plus the turbulent 
eddy viscosity. From [19] the fully developed velocity profile is obtained by substituting the 
turbulent model relations and integrating the equation with an assumed dp/dx estimated from Choi 
& Chung (1983). The initial particle density profile at the inlet of the pipe is assumed to be uniform 
across the section, and is taken from the given particle loading, pp -- 2'~f (Z = loading ratio). The 
boundary conditions of Uf, Ff and gp at the solid wall are given by Ur = f'f ffi f'p ffi 0. Assuming 
that the solid wall boundary is nonabsorbing and reflecting, the boundary condition of the density 
of the particle phase is taken to be d~p/dr ffi 0, as in Di Giacinto et aL (1982). The boundary 
condition of Up at the wall is not certain and needs some elaboration, as follows. Since the particles 
are known to slip over the wall surface (Boothroyd 1971), ~Tp does not vanish at the wall. In 
addition, our basic assumption is that the overall pressure drop is due to the seconday fluid flow 
over the wall as well as the primary air flow. If the velocity gradient of the secondary fluid is 
assumed to be zero, our mixing-length model would negate any contribution of the secondary fluid 
to the overall pressure drop, which is in contradiction to our basic assumption. A reasonable 
boundary condition for Up must be a compromise between the two logical extremes, Op = 0 and 
dUp/dr ffi 0. Careful inspection of the available experimental data of Lee (1982) and Tsuji et aL 
(1984) reveals that the gradient of the secondary fluid very near the wall is approximately 
proportional to that of the primary fluid, or dUp/dr oc dUf/dr. A computer optimization finally 
gives the proportional constant to be about 0.8, which is almost a representative value of the above 
experimental data. 

4. COMPUTATIONAL RESULTS AND DISCUSSIONS 

In order to examine any improvement in predictions by the above refined mixing-length model, 
the present computations are compared with those by Choi & Chung (1983) on Boothroyd's (1966) 
experiments, in which the friction factors of air flows were measured in smooth pipes carrying 
spherical zinc powders. The pipe diameters were 0.0254, 0.0508 and 0.0762 m and the particle sizes 
were distributed over the range 0 to ~40pro,  with an average size of 15 pm. Solid-gas loading 
ratios were between 0.3 and 10 and the Reynolds number, based on pipe diameter and the average 
velocity of the air, was fixed at 53,000 for all cases. 

Figure 1 compares predicted friction factors with the experimental data, whose uncertainty is 
estimated to be within 10%. The dashed curves are the predictions by Choi & Chung (1983) and 
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Figure 1. Comparison of predicted friction factors with the experimental data of Boothroyd (1966). 
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the solid curves are the present results. As can be seen, the former do not agree with the 
experimental data for larger relative particle size, whereas the present predictions show excellent 
agreement with them. This may be attributed to the fact that Choi & Chung's (1983) eddy-viscosity 
model is satisfied only when the Stokesian relaxation time is much smaller than the Lagrangian 
integral time. It can be shown also that for a given Reynolds number and solid-gas loading ratio, 
the wall friction factor increases as the relative particle size decreases. Figure 2 shows the solid 
friction factor, defined by 

2D AP, 
f p  - -  #p 02pL , [20]  

where AP, and D are the frictional pressure drop due to the particles and the pipe diameter, 
respectively and Up is the mean velocity of the particles. The dashed curve is Yang's (1978) 
correlation. Yang assumed that pneumatic conveying behaves similarly to moving beds if the 
relative velocities are used in place of the fluid velocities and developed a correlation formula for 
the solid friction factor as follows: 

Ret ~-0.979 
fp( l  -~ =)3 = 0.0126 r,--Rej ' [21] 

where (Re) t is the Reynolds number defined a s  (PfUtdp)/[t and Ut is the terminal velocity of a single 
particle. The experimental data used in the formulation of [21] were taken from experiments with 
much larger relative velocities between the two phases compared with those in the present analysis 
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Figure 2. Correlations between the sofid friction factor and a Reynolds number ratio, = Ret/Rep. 
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Figure 3. Mean velocity profiles of the primary fluid 
for various pipe sizes and gas-solid loading ratios. 

Figure 4. Predicted mean velocity profiles of the 
primary and secondary fluids in a pipe. 

(5 to ~ I0 m/s). The solid curves were obtained by our computation, which has almost the same 
slope as the correlation [23] but its magnitude is strongly dependent on the relative particle size. 

The mean velocity profiles of the primary fluid in 0.0254, 0.0508 and 0.0762 m pipes are shown 
in figure 3 with the solid-gas loading ratio as a parameter. When this ratio increases, the velocity 
profiles become more rounded in the core region. The variation of the velocity profile is more 
significant for larger relative particle size. Such an increase in the maximum velocity at the pipe 
center for higher loading ratios has also been observed in the experiments of Gill et al. (1964). 

The computed mean velocity profiles of the primary and secondary fluids are compared in figure 
4. The relative velocity between the two phases becomes zero at a distance very close to the wall 
and then particle phase precedes the primary fluid near the wall, which is in agreement with 
experimental observations by Lee (1983). 

5. CONCLUSIONS 

A "two-fluid" model using the refined mixing-length theory has been applied to investigate 
turbulent dilute gas-particle flow in a pipe. Eddy-viscosity models for gas-particle flow in a pipe 
and for the primary and the secondary fluids have been derived from an approximate balance 
equation for the turbulent kinetic energy in a state of local equilibrium. Turbulent kinetic energy 
is assumed to be dissipated by the fluctuations of the particle phase as well as by the primary 
conveying fluid. The boundary condition of the particle phase at the solid wall was chosen such 
that it permits a mean relative velocity at the wall, as observed experimentally. The Stokesian drag 
force terms, due to nonzero relative velocity between the two phases, were included in the governing 
equations for both phases. The present computational model predicts the characterizations of 
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gas-particle flow much better than the previous model over a broader range of Stokes number, 
loading ratio and relative particle size. 
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